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t t  is a s sumed  that  the bubble de tachment  f requency for  the hea t e r  sur face  is de te rmined  by 
the osci l lat ion f requency of the pa r t i c l e s  in the surrounding liquid. A relat ion is drawn up 
between the f requency and the detachment  d i ame te r  for  bubbles.  

The ma jo r  p a r a m e t e r  cha rac te r i z ing  heat  t r a n s f e r  in boiling is the product  fD0; it has  been shown [1] 
that  vapor  bubbles a re  detached f rom a hea t e r  sur face  at equal in tervals  and have identical s ize for  a given 
nucleation center .  I t  has a lso  been found that  fD 0 is constant,  t . e . ,  

�9 fOo=const. (1) 

I t  has [2] been s tated that this product  may  be e x p r e s s e d  in t e r m s  of the physical  p r o p e r t i e s  of the liquid 
by a re la t ionship of the fo rm 

rDo = O.59 [ g2c~(?' --'~") ] ~ (2) 

I t  has been observed  [3, 4] that  (2) does not apply for  high heat  f luxes,  the actual  detachment  f requency 
being cons iderably  higher than that by (2). 

I t  has  been suggested [4] that  the de tachment  f requency be calculated f rom the following formula  for  
conditions close to the cr i t ica l  one: 

fD~176 = L[4g(v'3g~-- ~,,).]o.5 (3) 

Figure  1 shows the dependence of f on D O as calculated f rom (3), which is shown by do t -and-dash  line; 
in fact  the calculated line ag r ee s  ve ry  well  with exper iment .  

Equation (3) di f fers  f rom (2) in that  D O en te rs  to the power  n = 0.5; the s a m e  value of n with D O has 
been obtained [5] in studying the detachment  of bubbles in re la t ion to d i a m e t e r  for  boiling liquid ni t rogen.  

These  examples  show that  n takes  values dependent on the heat  flux. I t  has been obse rved  [6] that  n 
has to va ry  f rom - 1 / 2  to - 2  in o rde r  to fit the r e su l t s  f rom var ious  sources ,  f rom which it has been con-  
cluded that  there  is no single re la t ion of f to D O applicable to the ent i re  range of bubble boiling. On this 
bas i s ,  th ree  regions were  dist inguished [6]: 1) the hydrodynamic  region,  where  n = - 1 / 2 ;  2) the t rans i t ion  
region,  where  n = - 3 / 4 ;  3) the the rmodynamic  region,  where  n = - 2 .  

I t  was a s sum ed  [6] that  n = - 1  should not be cons idered  in exact  theore t ica l  ana lyses ,  because  the 
r e su i t  f ~ D O is approx imate  and applies  only for  ve ry  smal l  bubble s izes .  I t  is c l ea r  that  fu r the r  studies 
a r e  needed to es tabl i sh  the full deta i ls  of this p r o c e s s .  

We have re la ted  the detachment  f requency to the d i ame te r  via the speed of motion of the bubbles; an 
analogous approach is found in [1], but the di f ference f rom the l a t t e r  is that  the detachment  f requency and 
d i a m e t e r  we re  considered as cer ta in  cha r ac t e r i s t i c s  of a wave p r o c e s s  a r i s ing  in the liquid at the s t a r t  of 
bubble growth,  so the relat ion between f and D O is inherent  in this case .  
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Fig. 1. Detachment f requency f, sec -1, as a function of d iamete r  D o (ram) of bub- 
bles.  Exper iments  of [4]. 

Fig. 2. Exper imenta l  data of [10] confirming the proport ional i ty  fac tor  in (5): 1-3) 
wa te r  with 0.8.104, 6.47.104, and 2.65.104, N / m  2, 4-6) benzene with 9.8" 104, 3.68 
~ 104, and 1.96 �9 104 N / m  2, 7 and 8 ethanol with 9.8.104 and 4.31 �9 104 N / m  2. 

The regula r  bubble production resu l t s  in the periodic displacement  of the surrounding liquid, which 
is essent ia l ly  osci l la tory;  the opposing flows of liquids at the root  of the bubble c rea te  at the mouth of a 
depress ion  an additional al ternat ing p ressure ;  a new bubble can grow only when the p r e s su re  at the mouth 
becomes equal to the total p r e s s u r e  at the surface  of the hea ter .  The per iodici ty  in the repeti t ion is due to 
the iner t ia  of the liquid, which considerably exceeds the iner t ia  in the vapor.  Then the bubbles on appea r -  
ing produce a per turbat ion in the liquid that is repeated with a f requency f, and this per turbat ion propagates 
into the liquid with some velocity v, which is determined by the size of the bubbles and the proper t ies  
of the liquid. The repeti t ion f requency of any wave p rocess  is re la ted to the propagation velocity by 

~=v/L. (4) 

I t  has been established [7] that bubbles moving in a liquid excite waves of length 

L=2nRo. (5) 

It  follows f rom (5) that the distance between two bubbles in each sequence should be proport ional  to 
the size; the coefficient  of propor t ional i ty  e = L / R  0 = 2~ re ta ins  the same value no mat te r  what the condi- 
t ions fo r  the boiling. 

To tes t  this conclusion we measured  the distances between bubbles on cine f i lms recorded  by N. N. 
Mamontova in examining the detachment  f requency and d iamete r  for  boiling in various liquids. Figure 2 
shows these resu l t s ,  which indicate that the mean value of the constant actual ly can be taken as 2~. 

Then the detachment  f requency is re la ted  to bubble size and veloci ty by 

f:vl2~Ro. (6) 

I t  has been found by exper iment  [3, 4] that the speed of t ranslat ional  motion of bubbles d i rec t ly  before  
detachment  equals the speed of f ree  r i se ;  consequently,  at the end of growth the accelera t ion  in the t r ans l a -  
tional motion becomes  zero ,  while the speed becomes constant and equal to the r i se  speed. It  is found [7] 
that  the f r ee  motion of a r is ing single gas bubble is given by 

v=[gRo(? ,_ , , ,  ) g~ ]~/2. (7) 
Y '+~"  + Ro (?' + ?") 

Exper iment  [6] shows that the speed of vapor  bubbles agrees  with that of gas bubbles when the heat flux is 
low, i . e . ,  when the vapor  bubbles a re  produced singly, so it is c o r r e c t  to assume that (7) applies also for 
single vapor  bubbles.  

We substi tute (7) into (6) to get  

1 [..gRo}y'--~,")+. g~ ]~/2 
f = ~ L v + v' Ro (v' + v") " (8) 
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Fig. 3. Comparison of exper imenta l  data and predicted ~ q in 
10 -2 W/m 2. 
Fig. 4. Relationship fD 0 = F(v/1-~0),  m / s e c  (atmospheric  p r e s ,  
sure):  1) wate r  [1]; 2) wa te r  [3]; 3) wate r  [10]; 4) wate r  [11]; 
5) water  [14]; 6) methanol [4]; 7) methanol [9]; 8) methanol [12]; 
9) ethanol [10]; 10) CC1r [3]; 11) n-pentane [13]. 

The broken line in Fig. 1 compares  the resul ts  calculated f rom (8) and recorded  by exper iment  [1]; 
the solid line in this figure r ep resen t s  calculations by relat ionship proposed by Jakob. Formula  (7) is c o r -  
r ec t  for  the motion of a single bubble, so (8) and Jakob's formula  cha rac te r i ze  the stage in boiling where  
there  is no interaction between adjacent chains of bubbles, i . e . ,  a t  low peak loading. 

If  (8) is used for pract ica l  calculations,  one should use in (6) the r i se  veloci ty v corresponding to the 
dimension of the detached bubbles; four regions may be distinguished [8] as r egards  the form of v = F(D0). 
Equation (7) applies for  the third and fourth regions.  

To elucidate the increased detachment  f requency at high heat loads we need to r e m e m b e r  the s t ruc tura l  
changes that occur  in the boundary two-phase l aye r  when the heat loading is high. 

o 

Inc rease  in heat loading is accompanied by increase  in the concentrat ion of nucleation centers  at the 
surface;  the vapor content ~o of the boundary l ay e r  then also inc reases ,  while the quantity of liquid at the 
boundary dec reases .  The higher  the heat flux, the higher  the vapor  content in the boundary l aye r ,  and the 
less  the liquid remaining there ,  and reduction in the liquid in that l a y e r  means that the fi lms of liquid be-  
tween adjacent  bubbles become thinner.  In that case ,  the bubbles begin to in teract ,  and the more  so the 
h igher  the vapor  content. The bubbles growing at adjacent centers  in teract  via the intervening thin film of 
liquid, and begin to ass i s t  one another ,  so the velocity inc reases  to v~o. In o ther  words ,  the res t r i c t ion  on the 
the slope for  f ree  increase  in horizontal  s ize is compensated by increased speed in the ver t ica l  direct ion,  
which is the reason  for  the change in detachment f requency and diameter .  

Then the bubble speed, which equals v for  ~0 ~ 0, r i ses  as the bubbles begin to in terac t  and becomes 
equal to v~0 at some s team content ~; the above view of the mechanism indicates that the speed of the bub- 
bles for  a vapor  content ~o may be expressed  via the speed of the individual bubbles as in 

v,~ = - - .  (9) 
1--(p 

We replace  v by v~o in (8) to get that the bubble detachment  f requency at  high heat  loadings is 

1 [ gRo (,' --,") g(~ ]~/2 
{ =  2~Ro(1--q~) ?'-l-7" } Ro ('~' -+- ?") .j " (10) 

Calculations f rom (10 )  coincide with the line defined by (3): for  ~0 = 0.780 for  water ,  o r  0.750 for  
methanol.  

Equation (10) is common to all regions of bubble boiling; as ~0 = 0 for  single bubbles,  (10) in that 
case  becomes (8) as a par t ia l  case.  

F rom (10) we conclude that: 1) if the detaching bubbles a re  sufficiently la rge ,  the f i r s t  t e r m  inside 
the square brackets  is much l a r g e r  than the second, and then f ~ I /D  ~ s, i . e . ,  n = - 1/2; 2) if the two 
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t e r m s  within the square  b r acke t s  a r e  equal (this occurs  fo r  R 0 = [~/ (7 ' -T~)]  ~ 5), then f is propor t ional  to 
l /D0, i . e . ,  n = - i ;  3) if the vapor  bubbles a r e  smal l ,  we can neglect  the f i r s t  t e r m  in the square  b racke t s ,  
and then f ~ 1/D~/2, i . e .  n = - 3 / 2 .  

Then (10) contains all  the cases  obse rved  in the var ious  exper imen t s  r epor t ed  in the l i t e r a tu re .  

A full t e s t  of (10) r equ i re s  knowledge of the vapor  content as a function of heat  flux; but at the p resen t  
t ime  there  is no suggest ion in the l i t e r a tu re  on how that  content ~ for  a boundary l aye r  in a two-phase  mix -  
ture  v a r i e s  for  a va r i e ty  of p r e s s u r e s ,  so we have tes ted  (10) for  p r e s s u r e s  not ve ry  g rea t ly  different  f rom 
a tmosphe r i c .  Under these  condit ions,  ~ in the boundary l a y e r  may be defined as  the ra t io  of the reduced 
evapora t ion  ra te  

w"=q/r~ H (11) 

to the t rue  speed of a bubble within this l aye r .  The vapor  phase is t r anspor t ed  by motion of the bubbles,  so 
one expects  that  the t rue  speed of the vapor  will not differ  g rea t ly  f rom the quantity defined by (9), e spec i a l -  
ly at e levated  ~; then 

w"(l - -~)  (12) q ) :  

where  v as before  is defined by (7) 

F r o m  (11) and (12) we have 

q (13) 
q ~ r?"v 

Figure  3 c o m p a r e s  (13) with exper iment ;  the curve f rom (13) sa t i s fac to r i ly  fits the daf t .  

Subsequently,  to t e s t  (10) we took e as having the value of (13); Fig. 4 shows resu l t s  f rom var ious  
sou rces  p r o c e s s e d  in accordance  with (10). 

Note that we have used exper imenta l  r e su l t s  only f rom pape r s  in which values we re  given for  the heat 
fluxes a t  which f and D o were  measu red .  

I t  is c l ea r  f r o m  Figure  4 that  the points fit  c lose ly  around the s t ra igh t  line defined by 
I 

1 v 
fDo = �9 (14) 

1 - - ~  

We conclude that it is i nco r r ec t  to say [6] that  a single equation cannot desc r ibe  the dependence of f on 
Do; var ious  values of n occur  in the re la t ion f ~ D~ because  the actual  speed of the bubbles changes with 
the heat  flux in accordance  with a r a t h e r  compl ica ted var ia t ion  in ~.  The p rob lem is to de te rmine  re l i ab ly  

and the bubble r i s e  speed v; if these  quantit ies a re  known, then the dependence of f on D o is eas i ly  der ived 
f rom (10). 

f 

RO, D O 
~/', T ~ 

g 
V 

W ~ 

q 
r 

N O T A T I O N  

is the f requency of bubble datachment;  
a r e  the radius  and d i a m e t e r  of bubbles;  
a r e  the dens i t ies  of  liquid and vapor ;  
is the su r face  tension coefficient;  
is  the grav i ta t iona l  acce le ra t ion  
is the bubble velocity;  
is the vapor  content; 
is the ra te  of evaporat ion;  
is the speci f ic  heat  flux; 
is the la tent  heat  of evaporat ion.  
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